Difference between revisions of "Angle bisector"
(→Features of Angle Bisectors) 

(5 intermediate revisions by the same user not shown)  
Line 1:  Line 1:  
{{WotWAnnounceweek=June 612}}  {{WotWAnnounceweek=June 612}}  
−  For an [[angle]] <math>\angle  +  For an [[angle]] <math>\angle BAC</math>, the (internal) angle bisector of <math>\angle BAC</math> is the line from <math>A</math> such that the angle between this line and <math>\overline{AB}</math> is congruent to the angle between this line and <math>\overline{AC}</math>: 
<center>[[Image:Anglebisector.png]]</center>  <center>[[Image:Anglebisector.png]]</center>  
−  +  An [[angle]] <math>\angle BAC</math> also has an external angle bisector, which bisects external angle <math>BAC</math>:  
+  
+  <asy>  
+  import markers;  
+  pair A,B,C,D,E,F;  
+  B=(0,0);  
+  C=(5,0);  
+  A=(4,2);  
+  D=(3,4);  
+  E=(10/3,0);  
+  F=rotate(90,A)*(E);  
+  draw(ABCcycle,blue);  
+  draw(CD,blue);  
+  pen p=blue+0.15mm;  
+  draw(AF,p);  
+  dot(A^^B^^C,red);  
+  label("$A$",A,NE);  
+  label("$B$",B,W);  
+  label("$C$",C,E);  
+  markangle(n=1,radius=20,D,A,F,green);  
+  markangle(n=1,radius=22,F,A,B,green);  
+  </asy>  
+  
+  The external angle is defined by <math>\angle A + \text{ external }\angle A = 180^\circ</math>, and the two angle bisectors are perpendicular to each other.  
== Features of Angle Bisectors ==  == Features of Angle Bisectors ==  
Line 16:  Line 39:  
*A bisector of an angle can be [[Constructionsconstructed]] using a compass and straightedge.  *A bisector of an angle can be [[Constructionsconstructed]] using a compass and straightedge.  
−  +  {{asy image<asy>  
+  size(300);  
+  import markers;  
+  pair excenter(pair A, pair B, pair C){  
+  pair X, Z;  
+  X=A+expi((angle(AB)+angle(CA))/2);  
+  Z=C+expi((angle(CB)+angle(AC))/2);  
+  return extension(X,A,Z,C);  
+  }  
+  pair X=(0,0), Y=(10,0), Z=(3,6);  
+  pair exX=excenter(Z,X,Y), exY=excenter(X,Y,Z), exZ=excenter(Y,Z,X);  
+  label("X",X,2*(1.5,1));label("Y",Y,2*(3,1));label("Z",Z,(0.6,2));  
+  dot(X^^Y^^Z);  
+  draw(0.3*(XY)+XY+0.3*(YX));draw(0.3*(YZ)+YZ+0.3*(ZY));draw(0.3*(XZ)+XZ+0.3*(ZX));  
+  draw(X+0.3*(XexX)exX,orange);draw(Y+0.3*(YexY)exY,orange);draw(Z+0.3*(ZexZ)0.6*(exZZ)+Z,orange);  
+  draw(Y0.5*(exXY)Y+0.5*(exXY),green);draw(Z0.5*(exXZ)Z+0.5*(exXZ),green);draw(X0.5*(exYX)X+0.5*(exYX),green);  
+  pair I=extension(X,exX,Z,exZ);  
+  dot("I",I,(1,2));  
+  draw(circle(I,length(Ifoot(I,X,Y))),blue);  
+  markangle(n=1,3*(ZX)+X,Z,exX,radius=22,marker(markinterval(stickframe(n=3),true)));  
+  markangle(n=1,exX,Z,Y,radius=20,marker(markinterval(stickframe(n=3),true)));  
+  markangle(n=1,3*(YZ)+Z,Y,exZ,radius=22,marker(markinterval(stickframe(n=2),true)));  
+  markangle(n=1,exZ,Y,X,radius=20,marker(markinterval(stickframe(n=2),true)));  
+  markangle(n=1,3*(XY)+Y,X,exY,radius=22,marker(markinterval(stickframe(n=1),true)));  
+  markangle(n=1,exY,X,Z,radius=20,marker(markinterval(stickframe(n=1),true)));  
+  
+  markangle(n=3,I,Z,X,radius=20);  
+  markangle(n=3,Y,Z,I,radius=22);  
+  markangle(n=2,Z,X,I,radius=20);  
+  markangle(n=2,I,X,Y,radius=22);  
+  markangle(n=1,X,Y,I,radius=22);  
+  markangle(n=1,I,Y,Z,radius=20);  
+  </asy>centerTriangle <math>\triangle XYZ</math> with [[incenter]] ''I'', [[incircle]] (blue), [[angle bisector]]s (orange), and [[angle bisectorexternal angle bisectors]] (green)}}  
==See also==  ==See also==  
Line 23:  Line 78:  
* [[Stewart's Theorem]]  * [[Stewart's Theorem]]  
−  
[[Category:Geometry]]  [[Category:Geometry]] 
Latest revision as of 22:50, 2 July 2020
This is an AoPSWiki Word of the Week for June 612 
For an angle , the (internal) angle bisector of is the line from such that the angle between this line and is congruent to the angle between this line and :
An angle also has an external angle bisector, which bisects external angle :
The external angle is defined by , and the two angle bisectors are perpendicular to each other.
Features of Angle Bisectors
 The distances from a point on an angle bisector to both of its sides are equal.
 The angle bisectors are the locus of points which are equidistant from the two sides of the angle.
 A reflection about either angle bisector maps the two sides of the angle to each other.
 In a triangle, the Angle Bisector Theorem gives the ratio in which the angle bisector cuts the opposite side.
 In a triangle, the internal angle bisectors (which are cevians) all intersect at the incenter of the triangle. The internal angle bisector of one angle and the external angle bisectors of the other two angles all intersect at an excenter of the triangle.
 A bisector of an angle can be constructed using a compass and straightedge.

Triangle with incenter I, incircle (blue), angle bisectors (orange), and external angle bisectors (green) 